Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arch Virol ; 168(3): 87, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786897

RESUMO

A methodological approach based on reverse transcription (RT)-multiplex PCR followed by next-generation sequencing (NGS) was implemented to identify multiple respiratory RNA viruses simultaneously. A convenience sampling from respiratory surveillance and SARS-CoV-2 diagnosis in 2020 and 2021 in Montevideo, Uruguay, was analyzed. The results revealed the cocirculation of SARS-CoV-2 with human rhinovirus (hRV) A, B and C, human respiratory syncytial virus (hRSV) B, influenza A virus, and metapneumovirus B1. SARS-CoV-2 coinfections with hRV or hRSV B and influenza A virus coinfections with hRV C were identified in adults and/or children. This methodology combines the benefits of multiplex genomic amplification with the sensitivity and information provided by NGS. An advantage is that additional viral targets can be incorporated, making it a helpful tool to investigate the cocirculation and coinfections of respiratory viruses in pandemic and post-pandemic contexts.


Assuntos
COVID-19 , Coinfecção , Vírus da Influenza A , Influenza Humana , Vírus de RNA , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Criança , Adulto , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Pandemias , RNA , Teste para COVID-19 , Coinfecção/diagnóstico , Coinfecção/epidemiologia , SARS-CoV-2/genética , Vírus de RNA/genética , Vírus Sincicial Respiratório Humano/genética , Vírus da Influenza A/genética , Sequenciamento de Nucleotídeos em Larga Escala , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Influenza Humana/epidemiologia
2.
PNAS Nexus ; 2(2): pgac301, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36743472

RESUMO

An accepted murine analogue for the environmental behavior of human SARS coronaviruses was aerosolized in microdroplets of its culture media and saliva to observe the decay of its airborne infectious potential under relative humidity (RH) conditions relevant to conditioned indoor air. Contained in a dark, 10 m3 chamber maintained at 22°C, murine hepatitis virus (MHV) was entrained in artificial saliva particles that were aerosolized in size distributions that mimic SARS-CoV-2 virus expelled from infected humans' respiration. As judged by quantitative PCR, more than 95% of the airborne MHV aerosolized was recovered from microdroplets with mean aerodynamic diameters between 0.56 and 5.6 µm. As judged by its half-life, calculated from the median tissue culture infectious dose (TCID50), saliva was protective of airborne murine coronavirus through a RH range recommended for conditioned indoor air (60% < RH < 40%; average half-life = 60 minutes). However, its average half-life doubled to 120 minutes when RH was maintained at 25%. Saliva microaerosol was dominated by carbohydrates, which presented hallmarks of vitrification without efflorescence at low RH. These results suggest that dehydrating carbohydrates can affect the infectious potential coronaviruses exhibit while airborne, significantly extending their persistence under the drier humidity conditions encountered indoors.

3.
Mem Inst Oswaldo Cruz ; 117: e220177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36651456

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in domestic animals have occurred from the beginning of the pandemic to the present time. Therefore, from the perspective of One Health, investigating this topic is of global scientific and public interest. OBJECTIVES: The present study aimed to determine the presence of SARS-CoV-2 in domestic animals whose owners had coronavirus disease 2019 (COVID-19). METHODS: Nasopharyngeal and faecal samples were collected in Uruguay. Using quantitative polymerase chain reaction (qPCR), we analysed the presence of the SARS-CoV-2 genome. Complete genomes were obtained using ARTIC enrichment and Illumina sequencing. Sera samples were used for virus neutralisation assays. FINDINGS: SARS-CoV-2 was detected in an asymptomatic dog and a cat. Viral genomes were identical and belonged to the P.6 Uruguayan SARS-CoV-2 lineage. Only antiserum from the infected cat contained neutralising antibodies against the ancestral SARS-CoV-2 strain and showed cross-reactivity against the Delta but not against the B.A.1 Omicron variant. MAIN CONCLUSIONS: Domestic animals and the human SARS-CoV-2 P.6 variant comparison evidence a close relationship and gene flow between them. Different SARS-CoV-2 lineages infect dogs and cats, and no specific variants are adapted to domestic animals. This first record of SARS-CoV-2 in domestic animals from Uruguay supports regular surveillance of animals close to human hosts.


Assuntos
COVID-19 , Doenças do Gato , Doenças do Cão , Gatos , Animais , Humanos , Cães , SARS-CoV-2/genética , Uruguai , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Animais Domésticos
4.
Mem Inst Oswaldo Cruz ; 116: e210275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35019072

RESUMO

BACKGROUND: Evolutionary changes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) include indels in non-structural, structural, and accessory open reading frames (ORFs) or genes. OBJECTIVES: We track indels in accessory ORFs to infer evolutionary gene patterns and epidemiological links between outbreaks. METHODS: Genomes from Coronavirus disease 2019 (COVID-19) case-patients were Illumina sequenced using ARTIC_V3. The assembled genomes were analysed to detect substitutions and indels. FINDINGS: We reported the emergence and spread of a unique 4-nucleotide deletion in the accessory ORF6, an interesting gene with immune modulation activity. The deletion in ORF6 removes one repeat unit of a two 4-nucleotide repeat, which shows that directly repeated sequences in the SARS-CoV-2 genome are associated with indels, even outside the context of extended repeat regions. The 4-nucleotide deletion produces a frameshifting change that results in a protein with two inserted amino acids, increasing the coding information of this accessory ORF. Epidemiological and genomic data indicate that the deletion variant has a single common ancestor and was initially detected in a health care outbreak and later in other COVID-19 cases, establishing a transmission cluster in the Uruguayan population. MAIN CONCLUSIONS: Our findings provide evidence for the origin and spread of deletion variants and emphasise indels' importance in epidemiological studies, including differentiating consecutive outbreaks occurring in the same health facility.


Assuntos
COVID-19 , Fases de Leitura Aberta , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral , Humanos , SARS-CoV-2/genética , Deleção de Sequência , Uruguai/epidemiologia
5.
Mem. Inst. Oswaldo Cruz ; 117: e220177, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422138

RESUMO

BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in domestic animals have occurred from the beginning of the pandemic to the present time. Therefore, from the perspective of One Health, investigating this topic is of global scientific and public interest. OBJECTIVES The present study aimed to determine the presence of SARS-CoV-2 in domestic animals whose owners had coronavirus disease 2019 (COVID-19). METHODS Nasopharyngeal and faecal samples were collected in Uruguay. Using quantitative polymerase chain reaction (qPCR), we analysed the presence of the SARS-CoV-2 genome. Complete genomes were obtained using ARTIC enrichment and Illumina sequencing. Sera samples were used for virus neutralisation assays. FINDINGS SARS-CoV-2 was detected in an asymptomatic dog and a cat. Viral genomes were identical and belonged to the P.6 Uruguayan SARS-CoV-2 lineage. Only antiserum from the infected cat contained neutralising antibodies against the ancestral SARS-CoV-2 strain and showed cross-reactivity against the Delta but not against the B.A.1 Omicron variant. MAIN CONCLUSIONS Domestic animals and the human SARS-CoV-2 P.6 variant comparison evidence a close relationship and gene flow between them. Different SARS-CoV-2 lineages infect dogs and cats, and no specific variants are adapted to domestic animals. This first record of SARS-CoV-2 in domestic animals from Uruguay supports regular surveillance of animals close to human hosts.

6.
Microbiol Resour Announc ; 10(21): e0041021, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042476

RESUMO

Two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants associated with increased transmission and immune evasion, P.1 and P.2, emerged in Brazil and spread throughout South America. Here, we report genomes corresponding to these variants that were recently detected in Uruguay. These P.1 and P.2 genomes share all substitutions that are characteristic of these variants.

7.
Transbound Emerg Dis ; 68(6): 3075-3082, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33501730

RESUMO

The analysis of genetic diversity in SARS-CoV-2 is the focus of several studies, providing insights into how the virus emerged and evolves. Most common changes in SARS-CoV-2 are single or point nucleotide substitutions; meanwhile, insertions and deletions (indels) have been identified as a less frequent source of viral genetic variability. Here, we report the emergence of a 12-nucleotide deletion in ORF7a, resulting in a 4-amino acid in-frame deletion. The Δ12 variant was identified in viruses from patients of a single outbreak and represents the first report of this deletion in South American isolates. Phylogenetic analysis revealed that Δ12 strains belong to the lineage B.1.1 and clustered separated from the remaining Uruguayan strains. The ∆12 variant was detected in 14 patients of this outbreak by NGS sequencing and/or two rapid and economic methodologies: Sanger amplicon sequencing and capillary electrophoresis. The presence of strong molecular markers as the deletion described here are useful for tracking outbreaks and reveal a significant aspect of the SARS-CoV-2 evolution on the robustness of the virus to keep its functionality regardless loss of genetic material.


Assuntos
COVID-19 , SARS-CoV-2 , Deleção de Sequência , COVID-19/virologia , Surtos de Doenças , Genoma Viral , Humanos , Filogenia , SARS-CoV-2/genética , Uruguai/epidemiologia
8.
Mem. Inst. Oswaldo Cruz ; 116: e210275, 2021. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1356485

RESUMO

BACKGROUND Evolutionary changes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) include indels in non-structural, structural, and accessory open reading frames (ORFs) or genes. OBJECTIVES We track indels in accessory ORFs to infer evolutionary gene patterns and epidemiological links between outbreaks. METHODS Genomes from Coronavirus disease 2019 (COVID-19) case-patients were Illumina sequenced using ARTIC_V3. The assembled genomes were analysed to detect substitutions and indels. FINDINGS We reported the emergence and spread of a unique 4-nucleotide deletion in the accessory ORF6, an interesting gene with immune modulation activity. The deletion in ORF6 removes one repeat unit of a two 4-nucleotide repeat, which shows that directly repeated sequences in the SARS-CoV-2 genome are associated with indels, even outside the context of extended repeat regions. The 4-nucleotide deletion produces a frameshifting change that results in a protein with two inserted amino acids, increasing the coding information of this accessory ORF. Epidemiological and genomic data indicate that the deletion variant has a single common ancestor and was initially detected in a health care outbreak and later in other COVID-19 cases, establishing a transmission cluster in the Uruguayan population. MAIN CONCLUSIONS Our findings provide evidence for the origin and spread of deletion variants and emphasise indels' importance in epidemiological studies, including differentiating consecutive outbreaks occurring in the same health facility.

9.
J Virol Methods ; 279: 113857, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32205180

RESUMO

Canine Distemper Virus (CDV) is a highly contagious pathogen of dogs that causes severe respiratory, gastrointestinal and nervous signs. Although vaccines have been used to prevent infections, CDV has been reported worldwide, even in vaccinated animals. In the present study, a representative wild type CDV strain (Arg24) was isolated from a sick vaccinated dog and its genome was completely sequenced using Illumina technology. This strain produced a strong cytopathic effect in Vero SLAM (Signaling Lymphocyte Activation Molecule) cells with a higher titer of 1.1 × 105 Median Tissue Culture Infectious Dose (TCID50/mL) at 32 h post infection, in cell-associated virus. The Arg24 strain genome, showed values of 97.1, 90.3, 96.7, 90.6, 89.8 and 97.3 % of amino acid identity with respect to the Onderstepoort vaccine strain (Nucleoprotein, Phosphoprotein, Matrix, Fusion, Hemagglutinin and Large polymerase, respectively). Focusing on the Hemagglutinin gene, which is the target for genetic characterization, Arg24 showed four additional potential glycosylation sites, with respect to the Onderstepoort. The availability of Arg24 strain, which can be easily grown in Vero SLAM cells, is an important tool to perform immunological and antigenic comparative studies, between wild type and vaccine CDV strains.


Assuntos
Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/isolamento & purificação , Cinomose/virologia , RNA Viral/genética , Animais , Chlorocebus aethiops , Cães , Genoma Viral , Hemaglutininas Virais/genética , Masculino , Filogenia , Células Vero , Sequenciamento Completo do Genoma
10.
Transbound Emerg Dis ; 67(3): 1198-1212, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31834976

RESUMO

Infectious bursal disease virus (IBDV) is an economically relevant and widespread pathogen that produces immunosuppression in young chickens. IBDV is genetically classified into seven genogroups (G1-G7), where the traditional classic, variant and very virulent strains correspond to G1, G2 and G3, respectively. The G4 strains, also known as 'distinct' (dIBDV), have recently acquired increased relevance because of their prevalence and notorious impair to the poultry industry in South America. Here, worldwide dIBDV strains were studied using phylogenetic and phylodynamic approaches. The phylogenetic analyses performed using partial and complete sequences of both viral segments (A and B) consistently clustered the dIBDV strains in a monophyletic group. The analyses of the VP5, polyprotein and VP1 coding regions identified amino acid residues that act as markers for the identification of the entire dIBDV group or different sub-populations. The phylodynamic analyses performed using the hypervariable region of VP2 indicated that the dIBDV strains emerged in the early 1930s in Eastern Europe, shortly after the emergence of classic strains (1927) and before variant (1949) and very virulent strains (1967). The analysis of the migration routes indicated that after its emergence, the dIBDV strains spread to Eastern Asia around 1959, to Brazil around 1963, and to Argentina around 1990. These inter-continental migrations resulted in three sub-populations that are currently represented by strains from (a) Brazil, (b) Eastern Asia and Canada, and (c) Eastern Europe, Argentina and Uruguay. Taken together, our results highlight the complex evolutionary history of IBDV and the importance of new phylodynamic data to unravel and nearly follow the different evolutionary pathways taken by this important poultry pathogen.


Assuntos
Evolução Biológica , Infecções por Birnaviridae/veterinária , Vírus da Doença Infecciosa da Bursa/fisiologia , Filogenia , Infecções por Birnaviridae/virologia , Vírus da Doença Infecciosa da Bursa/classificação , Vírus da Doença Infecciosa da Bursa/genética , Proteínas Virais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...